
AD-A267 814

Testing String Superprimitivity in Parallel

DTIC Dany Breslauer

S ELECTE • Columbia University

AUG 111993 CUCS-053-92

A
Abstract

A string w covers another string z if every symbol of z is within some occurrence
of w in z. A string is called superprimitive if it is covered only by itself, and quasiperi-
odic if it is covered by some shorter string. This paper presents an O(log log n) time
o porocessor CRCW-PRAM algorithm that tests if a string is superprimitive. The

algorithm is the fastest possible with this number of processors over a general alphabet.

1 Introduction

Quasiperiodicity. as defined by Apostolico and Ehrenfeucht [31, is an avoidable regularity
of strings that is strongly related to other regularities such as periods and squares [12].
Apostolico, Farach and Iliopoulos [4] and Breslauer [7] gave linear-time sequential algorithms
that tests if a string is superprimitive. Apostolico and Ehrenfeucht [3] presented an algorithm
that finds all maximal quasiperiodic substrings of a string.

This paper presents a parallel algorithm that tests if a string of length n is superprimitive
in O(log log n) time on a 10 0-processor CRCW-PRAM. This is the first efficient parallel
algorithm for this problem. The algorithm works under the general alphabet assumption
where the only access it has to the input string is by pairwise comparisons of symbols.

A parallel algorithm is said to achieve an optimal speedup if its time-processor product
is the same as the running time of the fastest sequential algorithm for the problem. We
show that any log .,lparallel superprimitivity testing algorithm over a general
alphabet must take at least fl(log log n) time. Thus, the algorithm presented in this paper
is a factor of log n processors away from optimality. Note that there exists a trivial constant
time superprimitivity testing algorithm that uses n 2 processors.

The superprimitivity testing algorithm follows techniques that were used in solving sev-
eral other parallel string problems [1, 2. 6, 10]. In particular, it uses the parallel string match-
ing algorithm of Breslaner and Gali] [8] as a procedure that solves several string matching
problems simultaneously and then combines the results of the string matching problems into
an, answer to the superprinlitivity problem.

This document has been approved
for public release and sale; its
distribution is unlixited.

93-18459 93 2..
mI*ii lhII|IIIJ

The paper is organized as follow. Section 2 gives basic definitions and properties of
strings. Section 3 overviews the parallel algorithms and tools that are used in the su-
pciIpriliitivity testing algorithm. Section 4 describes the basic step which is used by the
siiperprin itivitv testing algorithm in Section 5. Section 6 gives the lower bound.

2 Properties of Strings
A string w covers astring z if for every position i E {f,-", fzj} ofz there exists an occurrence

of w starting at some position j of z such that 1 < j < i < j + jwj - 1 < jzj. A string
z is called superprimitive if it is covered only by itself, and quasiperiodic if it is covered by
a string w such that w $ý z. A superprimitive string w that covers a string z is called a
quasiperiod of z.

A string z has a period w if z is a prefix of wk for some integer k. Alternatively, a string
w is a period of a string z if z = wt v and v is a possibly empty prefix of w. The shortest
period of a string z is cal led the period of z. Clearly, a string is always a period of itself.

We say that a non-empty string w is a border of a string z if z starts and ends with an
occurrence of w. That is, z = uw and z = wv for some possibly empty strings u and v.
Clearly. a string is always a border of itself. This border is called the trivial border.

We describe next few simple facts which are used in the superprimitivity testing algo-

rithm. Most of these facts were used in the sequential algorithms [4, 7] where their proofs
can be found.

Fact 2.1 A string z has a period of length r, such that ir < Jzj, if and only if it has a
non-trivial border of length jzj - 7r.

Fact 2.2 If a string w covers a string z then w is a border of z.

Note that by the last fact any cover of a string z can be represented by a single integer
that is the length the border of z.

Fact 2.3 If a string w covers a string z and another string v, such that 1wl < jvj, is a border
of z then w covers also v.

Fact 2.4 If a .,tring z is covered by two strings w and v, such that Iwj •_ Jvj, then w covers
r. Thtrefort. a string cannot have two different quasiperiods w and v.

Fact 2.5 If a string z has a border w, such that 21w! > IzI, then w covers z.

Proof: The string w covers the first half of the string z since it is a prefix of z and the last
half of the string z since it is also a suffix. Therefore, all symbols of z are covered by w. 0

92

3 The CRCW-PRAM Model

The algorithms described in this paper are for the concurrent-read concurrent write parallel
random access machine model. We use the weakest version of this model called the common

C(CIV-PRAM. In this model many processors have access to a shared memory. Concurrent
react and write operations are allowed at all memory locations. If several processors attempt
to write simultaneously to the same memory location, it is assumed they always attempt to
write the same value.

The superprimitivity testing algorithm uses the following previously known algorithms:

1. A parallel string matching algorithm that finds all occurrences of a given pattern in
a given text. The input to the string matching algorithm consists of two strings:
pattern[1..m] and text[1..n] and the output is a Boolean array match[1..n] that has

a "true" value in each position where an occurrence of the pattern starts in the
text. We use the Breslauer and Galil [8] parallel string matching algorithm that takes
O(log log rn) time on a 1g ' -processor CRCW-PRAM. This algorithm is the fastest
optimal parallel string matc ing algorithm on a general alphabet as implied by a lower
bound of Breslauer and Galil [9].

"2. The parallel algorithm of Breslauer and Galil [10] that finds all periods of a string of
length n in O(log log n) time on a nio , -processor CRCW-PRAM. The output of this

algorithm is a Boolean array periods[l..n] that has a "true" value at each position
which is a period of the input string.

:3. The algorithm of Fich, Ragde and Wigderson [11] to compute the minimum of n
integers between 1 and n in constant time using an n-processor CRCW-PRAM.

One of the major issues in the design of a PRAM algorithms is the assignment of proces-
sot's to their tasks. We ignore this issue in this paper and use a general theorem that states
that the assignment can be done.

Theorem 3.1 (Brent [5]) Any synchronous parallel algorithm of time t that consists of a
total of x elementary operations can be implemented on p processors in [x/p] + t time.

4 The Basic Step

This section shows how to test efficiently whether a given string w covers another string z.

Theorem 4.1 Given two string z and w, there exists an algorithm that tests whether w
coN, r.s z in O(log log Lzi) time on a 1o--1-processor CRCW-PRAM.

Proof: The algorithm has two steps:

• ,, i a | I

I. T'sing Breslauer and Galil's [S] string matching algorithm, find all occurrences of w in
z. This step takes O(log log Izi) time and uses i processors.

0 ~~~~log log Iziprcso .

"2. Using Fich, Ragde and Wigderson's [11] integer minima algorithm verify that each
symbol of : is within an occurrence of w. This step takes constant time and uses IzI
processors. It can be done as follows:

The string jzf is partitioned into consecutive blocks of length lwj. The computation
proceeds simultaneously in each block.

The position in z of the first and last occurrences of w in each block are found using
the using Fich, Ragde and Wigderson's [11] integer minima algorithm. All symbols of
z which are between the first and last occurrences of w in the same block are obviously
Covwred. All that remains to check is whether the symbols between the last occurrence
of w in each block and the first occurrence of w in the next block are also covered by
testing if the distance between these occurrences is smaller than or equal to Iwj. A
special attention is needed for the first and last blocks where the algorithm checks is
an occurrence starts at positions number I and Izi - jwi + I of z. 0

5 The Superprimitivity Test

This section describes the parallel superprimitivity test algorithm.

Theorem 5.1 There exists an algorithm that computes the quasiperiod of a string z inO~lg og(s) tmeona I1 og): -prcess•ois CPCW-PRAM.
1)log~ z

0(Iog-'log JZJ) ti17e on a 10.1,,.og roc'--"--'---PR ,11

Proof: The algorithm consists of four steps.

1. Compute all borders of z using Breslauer and Gaull's [10] algorithm that finds all
periods of a string. Recall that by Fact 2.2 if w covers z then w must be a border of
z and by Fact 2.1 there is a one-to-one corresponder.•e between the borders and the
periods of a string.

"2. Partition the borders of z into intervals [2 '.. 2 +I - 1] according to their length. If there

is more than one borders of z whose length is in the same interval then by Fact 2.5
the shorter border covers the longer one. By Fact 2.4 only the shortest border in each
interval is a candidate for the quasiperiod of z. The shortest border in each interval can
be found in constant time and 1z: by using Fich, Ragde and Wigderson's [111 integer
minima algorithm in each block simultaneously.

3. In each interval simultaneously, chcck if the shortest border in the interval covers z.

4. The shortest border that was found to covers z is the quasiperiod of z. 0

4

6 The Lower Bound

We prove a lower bound for testing if a string is superprimitive by a reduction to the lower
hound for string matching by Breslauer and Galil [9]. That lower bound is on the number of
comparison rounds an algorithm that computes the period of a string has to perform when
there are p comparisons in each round. The lower bounds holds for the CRCW-PRAM model
in case of a general alphabet where the only access an algorithm has to the input strings is
by pairwise comparisons of symbols.

Breslauer and Galil [9] show that an adversary can fool any algorithm which claims to
test if a string has a period which is shorter than half of its length in less than !([i1 +
log Iog't+,/,, 24) rounds of p comparisons each. Without going into the detail of that lower
hound, we use the fact that the adversary of Breslauer and Galil [9] answers the comparisons
in each round in such a way that after Q(![1 + log logl+p/,,] 2p) rounds it is still possible
that the input string has a period that is shorter than half of its length or that is does not
have any such period. In the latter case there is at least one symbol of the string that does
not appear anywhere else.

Lemma 6.1 The string generated by Breslauer and Galil's [9] adversary is superprimitive
if and only if it does not have a period that is shorter than half of its length.

Proof: If a, smring has a period that is shorter than half of its length, then by Fact 2.1 it
has a border that is longer than half of its length and by Fact 2.5 is quasiperiodic. On the
other hand, if a string has a symbol that appears only once, then it is superprimitive. 0

Theorem 6.2 Any comparison based parallel string superprimitivity test with p comparisons
in each round must take at least fl(f[] + log logFi+P/,, 2p) rounds.

Proof: By Lemma 6.1 the lower bound of Breslauer and Galil [9] holds also for superprim-
itivity testing. 0

Corollary 6.3 The alqorithin described in Section 5 is the fastest possible with the number
of proccssors used.

Proof: Substitute p= in Theorem 6.2. 3 Accesion For
NI CRAMI

7 Acknowledgments

I would like to thank Alberto Apostolico for helpful discussions. -. ..--.- .' --

By

Dt,,t: ibb ,tic. . 1
DTIC QUALITY FlE'PEMED 3 Avlij~b;sIv ' ;es

5SPeCidl

•~ • AIIII

References

[LI A. Apostolico andi D. Breslauer. An Optimal O(loglog n) Time Parallel Algorithm for
Detecting all Squares in a String. Technical Report CUCS-040-92, Computer Science
Dept.. Columbia University, 1992.

[21 A. Apostolico. D. Breslatier. and Z. Galil. Optimal Parallel Algorithms for Periods.
Palindromes and Squares. In Proc. 19th International Colloquium on Automata. Lan-
guages, and Programming. Springer-Verlag, Berlin, Germany, 1992. 296-307.

[3] A. Apostolico and A. Ehrenfeucht. Efficient Detection of Quasiperiodicities in Strings.
Technical Report 90.5, The Leonadro Fibonacci Institute, Trento, Italy, 1990.

[4] A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing for
strings. Inform. Process. Lett., 39:17-20, 1991.

(5] R. P. Brent. Evaluation of general arithmetic expressions. J. Assoc. Comput. AIach.,
21:201-206, 1974.

[61 D. Breslauer. Efficient String Algorithmics. PhD thesis, Dept. of Computer Science,
Columbia University, New York, NY, 1992.

[7] D. Breslauer. An On-Line String Superprimitivity Test. Inform. Process. Lett., to
appear.

[8] D. Breslauer and Z. Galil. An optimal O(log log n) time parallel string matching algo-
rithm. SIAM J. Comput., 19(6):1051-1058, 1990.

[91 D. Breslatier and Z. Galil. A Lower Bound for Parallel String Matching. SIAM J.
Comput.. 21(5):856-862, 1992.

[101 D. Breslauer and Z. Galil. Finding all periods and initial palindromes of a string in
parallel. Technical Report CUCS-017-92, Computer Science Dept., Columbia University,
1992.

[Ill F. E. Fich, R. L. Ragde, and A. Wigderson. Relations between concurrent-write models
of parallel computation. In Proc. 3rd ACM Symp. on Principles of Distributed Com-
puting. pages 179-189, 1984.

[121 \I. Lothaire. Cornbinatorics on Words. Addison-Wesley, Reading, MA., U.S.A., 1983.

6

